试题
题目:
如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.
答案
解:AE=CF.
理由:过E作EG∥CF交BC于G,
∴∠3=∠C,
∵∠BAC=90°,AD⊥BC,
∴∠ABC+∠C=90°,∠ABD+∠BAD=90°,
∴∠C=∠BAD,
∴∠3=∠BAD,
又∵∠1=∠2,BE=BE,
∴△ABE≌△GBE(AAS),
∴AE=GE,
∵EF∥BC,EG∥CF,
∴四边形EGCF是平行四边形,
∴GE=CF,
∴AE=CF.
解:AE=CF.
理由:过E作EG∥CF交BC于G,
∴∠3=∠C,
∵∠BAC=90°,AD⊥BC,
∴∠ABC+∠C=90°,∠ABD+∠BAD=90°,
∴∠C=∠BAD,
∴∠3=∠BAD,
又∵∠1=∠2,BE=BE,
∴△ABE≌△GBE(AAS),
∴AE=GE,
∵EF∥BC,EG∥CF,
∴四边形EGCF是平行四边形,
∴GE=CF,
∴AE=CF.
考点梳理
考点
分析
点评
平行四边形的判定与性质;全等三角形的判定与性质.
过E作EG∥CF交BC于G,可得四边形EGCF是平行四边形,则GE=CF,需证AE=GE,可通过证明△ABE≌△GBE(AAS)证得.
此题主要考查平行四边形的判定和性质以及全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )