试题

题目:
青果学院已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.
答案
青果学院证明:如答图所示,
∵点O为平行四边形ABCD对角线AC,BD的交点,
∴OA=OC,OB=OD.
∵G,H分别为OA,OC的中点,
∴OG=
1
2
OA,OH=
1
2
OC,
∴OG=OH.
又∵AB∥CD,
∴∠1=∠2.
在△OEB和△OFD中,
∠1=∠2,OB=OD,∠3=∠4,
∴△OEB≌△OFD,
∴OE=OF.
∴四边形EHFG为平行四边形.
青果学院证明:如答图所示,
∵点O为平行四边形ABCD对角线AC,BD的交点,
∴OA=OC,OB=OD.
∵G,H分别为OA,OC的中点,
∴OG=
1
2
OA,OH=
1
2
OC,
∴OG=OH.
又∵AB∥CD,
∴∠1=∠2.
在△OEB和△OFD中,
∠1=∠2,OB=OD,∠3=∠4,
∴△OEB≌△OFD,
∴OE=OF.
∴四边形EHFG为平行四边形.
考点梳理
平行四边形的判定与性质;全等三角形的判定与性质.
要证四边形EHFG是平行四边形,需证OG=OH,OE=OF,可分别由四边形ABCD是平行四边形和△OEB≌△OFD得出.
此题主要考查平行四边形的判定:对角线互相平分的四边形是平行四边形.
证明题.
找相似题