试题

题目:
青果学院(2011·道外区一模)如图,在△ABC中,∠ACB=90°,点E为AB中点,过点E作ED⊥BC于点D,在DE的延长线取一点F,使AF=CE.
求证:AC=EF.
答案
青果学院证明:∵点E为AB中点,
∴AE=EB,
又∵∠ACB=90°,
∴CE=AE=EB(直角三角形斜边上的中线等于斜边长的一半),
又∵AF=CE,
∴AF=CE=AE=EB,
又ED⊥BC,EB=EC,
∴∠1=∠2,
又∠2=∠3,AE=AF,
∴∠3=∠F,
∴∠1=∠F,
∴CE∥AF,
∴四边形ACEF是平行四边形,
∴AC=EF.
青果学院证明:∵点E为AB中点,
∴AE=EB,
又∵∠ACB=90°,
∴CE=AE=EB(直角三角形斜边上的中线等于斜边长的一半),
又∵AF=CE,
∴AF=CE=AE=EB,
又ED⊥BC,EB=EC,
∴∠1=∠2,
又∠2=∠3,AE=AF,
∴∠3=∠F,
∴∠1=∠F,
∴CE∥AF,
∴四边形ACEF是平行四边形,
∴AC=EF.
考点梳理
平行四边形的判定与性质;三角形中位线定理.
要证明AC=EF,可证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,可得∠1=∠F,进而得到CE∥AF即可证出四边形ACEF是平行四边形,进而得到结论.
此题主要考查了平行四边形的判定,方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
证明题.
找相似题