试题
题目:
(2013·济南一模)完成下列各题:
(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.
(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.
答案
(1)解:∵AB∥CD,
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC,
∴ABCD是平行四边形,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
(2)证明:∵AD平分∠EDC,
∴∠ADE=∠ADC,
又DE=DC,AD=AD,
∴△ADE≌△ADC,
∴∠E=∠C,
又∠E=∠B,
∴∠B=∠C,
∴AB=AC.
(1)解:∵AB∥CD,
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC,
∴ABCD是平行四边形,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
(2)证明:∵AD平分∠EDC,
∴∠ADE=∠ADC,
又DE=DC,AD=AD,
∴△ADE≌△ADC,
∴∠E=∠C,
又∠E=∠B,
∴∠B=∠C,
∴AB=AC.
考点梳理
考点
分析
点评
平行四边形的判定与性质;全等三角形的判定与性质.
(1)首先判定四边形ABCD是平行四边形,再根据平行四边形的性质和周长公式计算即可;
(2)由已知条件证明△ADE≌△ADC可得到∠E=∠C,又∠E=∠B,所以∠B=∠C,进而证明AB=AC.
(1)本题考查了平行四边形的判定和平行四边形的性质以及求平行四边形的周长;
(2)本题考查了全等三角形的判定和全等三角形的性质以及等腰三角形的证明.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )