试题
题目:
(2003·烟台)如图,是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B·A·E·F;乙乘2路车,路线是B·D·C·F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.
答案
解:可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.
解:可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质.
连接BE,交AD于G,先根据条件证明四边形ABDE是平行四边形,得到相等的线段EG=GB,AB=DE,BD=AE(1),根据GF∥BC,BC⊥EC,得到EF=FC(2),AB=DC(3),所以由(1)(2)(3)知BA+AE+EF=BD+DC+CF即两人同时到达F站.
主要考查了平行四边形的性质.利用平行四边形的性质得到相等的线段是解题的关键.
应用题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )