试题
题目:
如图,已知四边形ABCD的面积为8cm
2
,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是( )
A.4cm
2
B.3cm
2
C.2cm
2
D.1cm
2
答案
C
解:∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∴S
△ADC
=S
△ABC
=
1
2
×8=4,
∵E是AB的中点,
∴S
△AEC
=
1
2
S
△ABC
=
1
2
×4=2cm
2
,
故选C.
考点梳理
考点
分析
点评
平行四边形的判定与性质.
由已知条件可证明四边形ABCD是平行四边形,则△ADC和△ABC的面积是平行四边形面积的一半,又因为E是AB的中点,所以△AEC的面积是△ABC的一半,问题得解.
本题考查了平行四边形的判定以及性质和三角形的面积公式的运用,解题的关键是首先证明四边形ABCD是平行四边形.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )