试题

题目:
青果学院(2009·乌鲁木齐)如图,将平行四边形ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形.
答案
青果学院证明:连接A、C,设AC与BD交于点O.
∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
又∵BE=DF,∴OE=OF.
∴四边形AECF是平行四边形.
青果学院证明:连接A、C,设AC与BD交于点O.
∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
又∵BE=DF,∴OE=OF.
∴四边形AECF是平行四边形.
考点梳理
平行四边形的判定与性质.
要证四边形AECF是平行四边形,结合图形知BF是其一条对角线,故需连接另一条对角线AC,由四边形ABCD是平行四边形易知OA=OC,OC=OD,只要再证得OE=OF即可.
本题考查了平行四边形的性质和证明,是一道基础题.熟练掌握性质定理和判定定理是解题的关键.
证明题.
找相似题