试题
题目:
(2011·铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
答案
证明:∵DE,DF是△ABC的中位线,
∴DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
又∵∠BAC=90°,
∴平行四边形AEDF是矩形,
∴EF=AD.
证明:∵DE,DF是△ABC的中位线,
∴DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
又∵∠BAC=90°,
∴平行四边形AEDF是矩形,
∴EF=AD.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;三角形中位线定理.
由DE、DF是△ABC的中位线,根据三角形中位线的性质,即可求得四边形AEDF是平行四边形,又∠BAC=90°,则可证得平行四边形AEDF是矩形,根据矩形的对角线相等即可得EF=AD.
此题考查了三角形中位线的性质,平行四边形的判定与矩形的判定与性质.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )