试题
题目:
(2013·龙岩)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.
答案
(1)证明:如图:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2
∴∠5=∠6
∵在△ADE与△CBF中,
∠3=∠4
AD=BC
∠5=∠6
∴△ADE≌△CBF(ASA),
∴AE=CF;
(2))证明:∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF,
∴四边形EBFD是平行四边形.
(1)证明:如图:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2
∴∠5=∠6
∵在△ADE与△CBF中,
∠3=∠4
AD=BC
∠5=∠6
∴△ADE≌△CBF(ASA),
∴AE=CF;
(2))证明:∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF,
∴四边形EBFD是平行四边形.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;全等三角形的判定与性质.
(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;
(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.
本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
证明题.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )