试题
题目:
如图所示,在·ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件
AE=FC或∠ABE=∠CDF
AE=FC或∠ABE=∠CDF
,则四边形EBFD为平行四边形.
答案
AE=FC或∠ABE=∠CDF
解:∵四边形EBFD要为平行四边形
∴∠BAE=∠DCF,AB=CD
又AE=FC
∴△AEB≌△CFD
∴AE=FC
∴DE=BF
∴四边形EBFD为平行四边形.
∴可添加的条件是AE=FC,同理还可添加∠ABE=∠CDF.
故答案为:AE=FC或∠ABE=∠CDF.
考点梳理
考点
分析
点评
专题
平行四边形的判定与性质;全等三角形的判定与性质.
四边形EBFD要为平行四边形,则要证DE=BF,就要证△AEB≌△CFD,而在平行四边形中已有AB=CD,∠A=∠C,因而可添加AE=FC或∠ABE=∠CDF就可用SAS或ASA得证.
本题考查了平行四边形的判定与性质,是开放题,答案不唯一,可以针对各种平行四边形的判定方法,给出条件,本题可通过要证DE=BF,且DE∥BF,即可证明平行四边形成立,于是构造条件证△AEB≌△CFD即可.
开放型.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )