试题

题目:
青果学院(2013·竹溪县模拟)如图:已知AB=10,点C、D在线段AB上且AC=DB=1; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是
4
4

答案
4

青果学院解:如图,分别延长AE、BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-1-1=8,
∴MN=4,即G的移动路径长为4.
故答案为:4.
考点梳理
三角形中位线定理;等边三角形的性质;平行四边形的判定与性质.
分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.
本题考查了三角形中位线定理及等边三角形的性质,解答本题的关键是作出辅助线,找到点G移动的规律,判断出其运动路径,综合性较强.
找相似题