试题
题目:
如图,E、F分别是·ABCD的边AB、CD的中点,则图中平行四边形的个数共有( )
A.2个
B.3个
C.4个
D.5个
答案
C
解:∵四边形ABCD是平行四边形,
∴DC∥AB,DC=AB,
∵E、F分别是边AB、CD的中点,
∴DF=FC=
1
2
DC,AE=EB=
1
2
AB,
∵DC=AB,
∴DF=FC=AE=EB,
∴四边形DFBE和CFAE都是平行四边形,
∴DE∥FB,AF∥CE,
∴四边形FHEG是平行四边形,
故选:C.
考点梳理
考点
分析
点评
平行四边形的判定与性质.
首先根据四边形ABCD是平行四边形,可得DC∥AB,DC=AB,再根据E、F分别是边AB、CD的中点,可得DF=FC=
1
2
DC,AE=EB=
1
2
AB,进而可根据一组对边平行且相等的四边形是平行四边形证明四边形DFBE和CFAE都是平行四边形,再根据平行四边形的性质可得DE∥FB,AF∥CE,进而可证出四边形FHEG是平行四边形.
此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形的性质定理和判定定理.
找相似题
(2011·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有( )
(2013·本溪三模)如图,点O是AC的中点,将周长为8cm的平行四边形ABCD沿对角线AC方向平移AO长度得到平行四边形OB′C′D′,则四边形OECF的周长为( )
过两点A(3,4)、B(-2,4)作直线AB,则直线AB( )
如图,在·ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
在△ABC中,AB=7,AC=5,AD是边BC的中线,那么AD的取值范围是( )