试题
题目:
(2013·邗江区一模)已知二次函数y=ax
2
+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x
…
0
1
2
3
…
y
…
5
2
1
2
…
点A(x
1
,y
1
)、B(x
2
,y
2
)在函数的图象上,则当0<x
1
<1,2<x
2
<3时,y
1
与y
2
的大小关系是
y
1
>y
2
y
1
>y
2
.
答案
y
1
>y
2
解:根据图表知,
当x=1和x=3时,所对应的y值都是2,∴抛物线的对称轴是直线x=2,
又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,
∴该二次函数的图象的开口方向是向上;
∵0<x
1
<1,2<x
2
<3,
0<x
1
<1关于对称轴的对称点在3和4之间,
当x>2时,y随x的增大而增大,
∴y
1
>y
2
,
故答案是:y
1
>y
2
考点梳理
考点
分析
点评
专题
二次函数图象上点的坐标特征.
由二次函数图象的对称性知,图表可以体现出二次函数y=ax
2
+bx+c的对称轴和开口方向,然后由二次函数的单调性填空.
本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,用待定系数法求二次函数的解析式等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.
计算题;压轴题.
找相似题
(2013·宜宾)对于实数a、b,定义一种运算“·”为:a·b=a
2
+ab-2,有下列命题:
①1·3=2;
②方程x·1=0的根为:x
1
=-2,x
2
=1;
③不等式组
(-2)·x-4<0
1·x-3<0
的解集为:-1<x<4;
④点(
1
2
,
5
2
)在函数y=x·(-1)的图象上.
其中正确的是( )
(2013·成都)在平面直角坐标系中,下列函数的图象经过原点的是( )
(2012·泰安)设A(-2,y
1
),B(1,y
2
),C(2,y
3
)是抛物线y=-(x+1)
2
+a上的三点,则y
1
,y
2
,y
3
的大小关系为( )
(2012·衢州)已知二次函数y=-
1
2
x
2
-7x+
15
2
,若自变量x分别取x
1
,x
2
,x
3
,且0<x
1
<x
2
<x
3
,则对应的函数值y
1
,y
2
,y
3
的大小关系正确的是( )
(2012·崇左)已知二次函数y=ax
2
+bx+c(a<0)的图象经过点A(-2,0)、O(0,0)、B(-3,y
1
)、C(3,y
2
)四点,则y
1
与y
2
的大小关系正确的是( )