试题
题目:
已知等腰三角形△ABC中,AB=AC,∠C的平分线与AB边交于点P,M为△ABC的内切圆⊙I与BC边的切点,作MD∥AC,交⊙I于点D.
证明:PD是⊙I的切线.
答案
证明:过点P作⊙I的切线PQ(切点为Q)并延长,交BC于点N.
∵CP为∠ACB的平分线,
∴∠ACP=∠BCP.
又∵PA、PQ均为⊙I的切线,
∴∠APC=∠NPC.
又CP公共边,
∴△ACP≌△NCP,
∴∠PAC=∠PNC.
由NM=QN,BA=AC,
∴△QNM∽△BAC,
故∠NMQ=∠ACB,
∴MQ∥AC
又∵MD∥AC,
∴MD和MQ为同一条直线.
又点Q、D均在⊙I上,
∴点Q和点D重合,
故PD是⊙I的切线.
证明:过点P作⊙I的切线PQ(切点为Q)并延长,交BC于点N.
∵CP为∠ACB的平分线,
∴∠ACP=∠BCP.
又∵PA、PQ均为⊙I的切线,
∴∠APC=∠NPC.
又CP公共边,
∴△ACP≌△NCP,
∴∠PAC=∠PNC.
由NM=QN,BA=AC,
∴△QNM∽△BAC,
故∠NMQ=∠ACB,
∴MQ∥AC
又∵MD∥AC,
∴MD和MQ为同一条直线.
又点Q、D均在⊙I上,
∴点Q和点D重合,
故PD是⊙I的切线.
考点梳理
考点
分析
点评
专题
切线的判定;全等三角形的判定与性质;等腰三角形的性质;相似三角形的判定与性质.
过P点作出圆的切线,Q点为切点,通过证明Q点与D点重合来证明PD与圆相切.
本题考查了切线的证明,和以往证明切线不同,本题采用了一种全新的证明切线的方法,即:作圆的切线,证明要证明的切线与所作切线重合.
证明题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )