试题

题目:
设A(-2,y1),B(-1,y2),C(2,y3)是抛物线y=-2(x-1)2+k(k为常数)上的三点,则y1,y2,y3的大小关系为(  )



答案
A
解:∵抛物线y=-2(x-1)2+k(k为常数)的开口向下,对称轴为直线x=1,
而A(-2,y1)离直线x=1的距离最远,C(2,y3)点离直线x=1最近,
∴y1<y2<y3
故选A.
考点梳理
二次函数图象上点的坐标特征.
根据二次函数的性质得到抛物线y=-2(x-1)2+k(k为常数)的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.
本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.
计算题.
找相似题