试题
题目:
在二次函数y=-x
2
+bx+c中,函数y与自变量x的部分对应值如下表:
x
-3
-2
-1
1
2
3
4
5
6
y
-14
-7
-2
2
m
n
-7
-14
-23
则m、n的大小关系为( )
A.m>n
B.m<n
C.m=n
D.无法比较
答案
A
解:∵x=-2时,y=-7,x=4时,y=-7,
∴抛物线对称轴为直线x=
-2+4
2
=1,即(1,2)为抛物线的顶点,
∴2为抛物线的最大值,即抛物线开口向下,
∴当x>1时,抛物线为减函数,x<1时,抛物线为增函数,
∴(2,m)与(3,n)在抛物线对称轴右侧,且2<3,
则m>n.
故选A.
考点梳理
考点
分析
点评
专题
二次函数图象上点的坐标特征.
由表格中x=-2与x=4时,对应的函数y都为-7,确定出(1,2)为二次函数的顶点坐标,即x=1为抛物线的对称轴,且抛物线开口向下,进而由抛物线的增减性,即可判断出m与n的大小.
此题考查了二次函数图象上点的坐标特征,以及二次函数的图象与性质,其中根据表格的抛物线的对称轴及开口方向是解本题的关键.
计算题.
找相似题
(2013·宜宾)对于实数a、b,定义一种运算“·”为:a·b=a
2
+ab-2,有下列命题:
①1·3=2;
②方程x·1=0的根为:x
1
=-2,x
2
=1;
③不等式组
(-2)·x-4<0
1·x-3<0
的解集为:-1<x<4;
④点(
1
2
,
5
2
)在函数y=x·(-1)的图象上.
其中正确的是( )
(2013·成都)在平面直角坐标系中,下列函数的图象经过原点的是( )
(2012·泰安)设A(-2,y
1
),B(1,y
2
),C(2,y
3
)是抛物线y=-(x+1)
2
+a上的三点,则y
1
,y
2
,y
3
的大小关系为( )
(2012·衢州)已知二次函数y=-
1
2
x
2
-7x+
15
2
,若自变量x分别取x
1
,x
2
,x
3
,且0<x
1
<x
2
<x
3
,则对应的函数值y
1
,y
2
,y
3
的大小关系正确的是( )
(2012·崇左)已知二次函数y=ax
2
+bx+c(a<0)的图象经过点A(-2,0)、O(0,0)、B(-3,y
1
)、C(3,y
2
)四点,则y
1
与y
2
的大小关系正确的是( )