试题
题目:
(2010·房山区一模)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交
BD于点G,交AB于点F.
(1)求证:AC与⊙O相切;
(2)当BD=2,sinC=
1
2
时,求⊙O的半径.
答案
(1)证明:如图,连接OE.
∵AB=BC且D是BC中点
∴BD⊥AC
∵BE平分∠ABD
∴∠ABE=∠DBE
∵OB=OE
∴∠OBE=∠OEB
∴∠OEB=∠DBE
∴OE∥BD
∴OE⊥AC
∴AC与⊙O相切.
(2)解:∵BD=2,sinC=
1
2
,BD⊥AC
∴BC=4
∴AB=4
设⊙O 的半径为r,则AO=4-r
∵AB=BC
∴∠C=∠A
∴sinA=sinC=
1
2
.
∵AC与⊙O相切于点E,
∴OE⊥AC
∴sinA=
r
4-r
=
1
2
∴r=
4
3
.
(1)证明:如图,连接OE.
∵AB=BC且D是BC中点
∴BD⊥AC
∵BE平分∠ABD
∴∠ABE=∠DBE
∵OB=OE
∴∠OBE=∠OEB
∴∠OEB=∠DBE
∴OE∥BD
∴OE⊥AC
∴AC与⊙O相切.
(2)解:∵BD=2,sinC=
1
2
,BD⊥AC
∴BC=4
∴AB=4
设⊙O 的半径为r,则AO=4-r
∵AB=BC
∴∠C=∠A
∴sinA=sinC=
1
2
.
∵AC与⊙O相切于点E,
∴OE⊥AC
∴sinA=
r
4-r
=
1
2
∴r=
4
3
.
考点梳理
考点
分析
点评
专题
解直角三角形;切线的判定.
连接OE,通过证明OE∥BD证明OE⊥AC,得出AC与⊙O相切;通过证明∠C=∠A,解直角三角形AOE求OE的长,即半径的长度.
考查了切线的判定、圆的性质以及解直角三角形的简单应用.
计算题;证明题;压轴题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )