切线的判定;勾股定理;相似三角形的判定与性质.
(1)易证得△BAE∽△DAB,得到AB:AD=AE:AB,即AB2=AD·AE,而AE=2,ED=4,即可计算出AB的长;
(2)连OA,根据圆周角定理的推论得到∠BAD=90°,再利用勾股定理计算出BD,得到∠D=30°,易得△OAB为等边三角形,则有AB=BF=BO,根据圆周角定理的推论得到△OAF为直角三角形,即∠OAF=90°,然后根据切线的判定定理得到直线AF是⊙O的切线.
本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论以及三角形相似的判定与性质.
计算题.