试题
题目:
如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.判断DC是否为⊙O的切线,并说明理由.
答案
解:DC是⊙O的切线.
理由:∵DC=AC,∴∠CAD=∠D.
又∵∠ACD=120°,
∴∠CAD=
1
2
(180°-∠ACD)=30°,
∵OC=OA,
∴∠A=∠ACO=30°,
∴∠COD=60°,又∵∠D=30°,
∴∠OCD=180°-∠COD-∠D=90°,
∴DC是⊙O的切线.
解:DC是⊙O的切线.
理由:∵DC=AC,∴∠CAD=∠D.
又∵∠ACD=120°,
∴∠CAD=
1
2
(180°-∠ACD)=30°,
∵OC=OA,
∴∠A=∠ACO=30°,
∴∠COD=60°,又∵∠D=30°,
∴∠OCD=180°-∠COD-∠D=90°,
∴DC是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定.
DC是⊙O的切线.根据△ACD,△AOC为等腰三角形,∠ACD=120°,利用三角形内角和定理求∠OCD=90°即可.
本题考查了圆的切线的判定和等腰三角形的性质,解题的关键是利用已知角,特殊三角形,三角形内角和定理求解.
探究型.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )