试题
题目:
已知,如图:在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于D,取AC中点E,连结OE,ED的延长线与CB的延长线交于F.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径为3cm,ED=4cm,求sin∠F的值.
答案
证明:(1)如图,连结OD,
则OD=OC=OB,
∴∠OBD=∠ODB,
又∵E为AC的中点,O是CB的中点,
∴OE∥AB,
∴∠COE=∠CBA,∠EOD=∠ODB,
∴∠COE=∠EOD,
∵在△OCE和△ODE中,
OE=OE
∠COE=∠DOE
OC=OD
∴△OCE≌△ODE(SAS),
∴∠ODB=∠OCE=90°,
即ED⊥OD,
∵OD为半径,
∴DE是圆O的切线.
(2)解:由OC=OD=OB=3cm,
ED=EC=4cm,
∵∠F=∠F,∠FCE=∠FDO,
∴△FDO∽△FCE,
∴
FO
FE
=
OD
EC
=
3
4
,
设FD=x,
x
2
+9
x+4
=
3
4
,
x=
72
7
,
∴EF=
72
7
+4=
100
7
,
∴sin∠F=
CE
EF
=
7
5
.
证明:(1)如图,连结OD,
则OD=OC=OB,
∴∠OBD=∠ODB,
又∵E为AC的中点,O是CB的中点,
∴OE∥AB,
∴∠COE=∠CBA,∠EOD=∠ODB,
∴∠COE=∠EOD,
∵在△OCE和△ODE中,
OE=OE
∠COE=∠DOE
OC=OD
∴△OCE≌△ODE(SAS),
∴∠ODB=∠OCE=90°,
即ED⊥OD,
∵OD为半径,
∴DE是圆O的切线.
(2)解:由OC=OD=OB=3cm,
ED=EC=4cm,
∵∠F=∠F,∠FCE=∠FDO,
∴△FDO∽△FCE,
∴
FO
FE
=
OD
EC
=
3
4
,
设FD=x,
x
2
+9
x+4
=
3
4
,
x=
72
7
,
∴EF=
72
7
+4=
100
7
,
∴sin∠F=
CE
EF
=
7
5
.
考点梳理
考点
分析
点评
切线的判定;相似三角形的判定与性质.
(1)连接OD,求出OE∥AB,根据平行线性质和角平分线定义推出∠COE=∠EOD,证△OCE≌△ODE,推出∠ODB=∠OCE=90°,根据切线的判定推出即可;
(2)证△FDO∽△FCE,推出
FO
FE
=
OD
EC
=
3
4
,设FD=x,代入求出x,求出EF,根据锐角三角函数的定义求出即可.
本题考查了切线的判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,综合性比较强.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )