试题
题目:
(2002·南宁)如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E.
(1)求证:AC是⊙O的切线;
(2)若AD:DB=3:2,AC=15,求⊙O的直径.
答案
(1)证明:连接OD,CD;
∵切线DE平分AC于E,
∴∠ODE=90°,
∵BC是⊙O的直径,
∴在Rt△ADC中DE=CE;
∵OE=OE,OD=OC,
∴△ODE≌△OCE,
∴∠ACB=90°,
∴AC是⊙O的切线.
(2)解:∵AC是⊙O的切线;
∴AC·AC=AD·AB=AD·(AD+BD)AD:DB=3:2,
∴AD=3
15
,AB=5
15
,
∴BC=5
6
.
(1)证明:连接OD,CD;
∵切线DE平分AC于E,
∴∠ODE=90°,
∵BC是⊙O的直径,
∴在Rt△ADC中DE=CE;
∵OE=OE,OD=OC,
∴△ODE≌△OCE,
∴∠ACB=90°,
∴AC是⊙O的切线.
(2)解:∵AC是⊙O的切线;
∴AC·AC=AD·AB=AD·(AD+BD)AD:DB=3:2,
∴AD=3
15
,AB=5
15
,
∴BC=5
6
.
考点梳理
考点
分析
点评
专题
切线的判定;切割线定理.
(1)要证AC是⊙O的切线,只要证∠BCA=90°即可;
(2)切割线定理得出关于AD,AB的比例式,求出AB的长,再用勾股定理求出求⊙O的直径.
本题考查了切线的判定,切割线定理和勾股定理的综合运用.
几何综合题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )