试题

题目:
青果学院如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.
(1)求证:CD是⊙O的切线;
(2)若BC=3,求CD的长.
答案
青果学院(1)证明:连结OD,如图,
∵∠ADE=60°,∠C=30°,
∴∠ADC=180°-∠ADE=120°,∠A=∠ADE-∠C=30°,
∵OA=OD,
∴∠ODA=∠A=30°,
∴∠ODC=∠ADC-∠ODA=90°,
∴OD⊥DC,
∴CD是⊙O的切线;

(2)解:在Rt△ODC中,∠C=30°,
∴OC=2OD,即OB+BC=2OD,
而OD=OB,BC=3,
∴OD+3=2OD,解得OD=3,
∴DC=
3
OD=3
3

青果学院(1)证明:连结OD,如图,
∵∠ADE=60°,∠C=30°,
∴∠ADC=180°-∠ADE=120°,∠A=∠ADE-∠C=30°,
∵OA=OD,
∴∠ODA=∠A=30°,
∴∠ODC=∠ADC-∠ODA=90°,
∴OD⊥DC,
∴CD是⊙O的切线;

(2)解:在Rt△ODC中,∠C=30°,
∴OC=2OD,即OB+BC=2OD,
而OD=OB,BC=3,
∴OD+3=2OD,解得OD=3,
∴DC=
3
OD=3
3
考点梳理
切线的判定.
(1)连结OD,根据邻补角和三角形外角性质可得到∠ADC=120°,∠A=30°,则∠ODA=30°,于是可计算出∠ODC=∠ADC-∠ODA=90°,然后根据切线的判定定理即可得到结论;
(2)由于在Rt△ODC中,∠C=30°,根据含30度的直角三角形三边的关系得OC=2OD,则可计算出OD=3,然后利用DC=
3
OD求解.
本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.
证明题.
找相似题