试题
题目:
已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系:
相切
相切
;
(2)证明第(1)题的猜想.
答案
相切
(1)解:相切.
故答案为:相切.
(2)证明:连接OD,
∵AE是⊙O的直径,
∴∠ADE=90°,
∴∠A+∠AED=90°,
∵∠C=90°,
∴∠ADE=∠C,
∴DE∥BC,
∴∠EDB=∠CBD,
∵∠CBD=∠A,
∴∠EDB=∠A,
∵OD=OE,
∴∠ODE=∠OED,
∴∠ODE+∠EDB=90°,
即OD⊥BD,
∴BD与⊙O的位置关系是相切.
考点梳理
考点
分析
点评
专题
切线的判定.
(1)观察图形,可得BD与⊙O的位置关系:相切;
(2)首先连接OD,由AE是⊙O的直径,在Rt△ABC中,∠C=90°,易证得DE∥BC,又由∠CBD=∠A,可证得∠ODE+∠EDB=90°,即可证得结论.
此题考查了切线的判定以及平行线的判定与性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.
探究型.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )