试题
题目:
(2010·达州)已知:如图,在锐角∠MAN的边AN上取一点B,以AB为直径的半圆O交AM于C,交∠
MAN的角平分线于E,过点E作ED⊥AM,垂足为D,反向延长ED交AN于F.
(1)猜想ED与⊙O的位置关系,并说明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求阴影部分的面积.
答案
解:(1)DE与⊙O相切.(1分)
理由如下:
连接OE,
∵AE平分∠MAN,
∴∠1=∠2.
∵OA=OE,
∴∠2=∠3.
∴∠1=∠3.
∴OE∥AD.
∴∠OEF=∠ADF=90°.(2分)
∴OE⊥DE,垂足为E.
∵点E在半圆O上,
∴ED与⊙O相切.(3分)
(2)∵cos∠MAN=
1
2
,
∴∠MAN=60°.
∴∠2=
1
2
MAN=
1
2
×60°=30°.
∴∠AFD=90°-∠MAN=90°-60°=30°.
∴∠2=∠AFD.
∴EF=AE=
3
.(4分)
在Rt△OEF中,tan∠OFE=
OE
EF
,
∴tan30°=
OE
3
.
∴OE=1.(5分)
∵∠4=∠MAN=60°,
∴S
阴
=S
△OEF
-S
扇形OEB
=
1
2
×1×
3
-
60·π·
1
2
360
=
3
2
-
1
6
π
.(6分)
解:(1)DE与⊙O相切.(1分)
理由如下:
连接OE,
∵AE平分∠MAN,
∴∠1=∠2.
∵OA=OE,
∴∠2=∠3.
∴∠1=∠3.
∴OE∥AD.
∴∠OEF=∠ADF=90°.(2分)
∴OE⊥DE,垂足为E.
∵点E在半圆O上,
∴ED与⊙O相切.(3分)
(2)∵cos∠MAN=
1
2
,
∴∠MAN=60°.
∴∠2=
1
2
MAN=
1
2
×60°=30°.
∴∠AFD=90°-∠MAN=90°-60°=30°.
∴∠2=∠AFD.
∴EF=AE=
3
.(4分)
在Rt△OEF中,tan∠OFE=
OE
EF
,
∴tan30°=
OE
3
.
∴OE=1.(5分)
∵∠4=∠MAN=60°,
∴S
阴
=S
△OEF
-S
扇形OEB
=
1
2
×1×
3
-
60·π·
1
2
360
=
3
2
-
1
6
π
.(6分)
考点梳理
考点
分析
点评
专题
切线的判定;平行线的性质;角平分线的性质;等腰三角形的性质;扇形面积的计算.
(1)连接OE,根据角平分线的性质及等边对等角可求得∠1=∠3,再根据平行线的性质即可得到OE⊥DE,因为OE是半径,从而得到ED与⊙O相切.
(2)由已知可得到∠MAN=60°,从而推出∠2=∠AFD=30°,根据等角对等边得到EF=AE,再根据S
阴
=S
△OEF
-S
扇形OEB
即可求解.
此题主要考查学生对切线的判定方法及扇形面积计算的综合运用能力.
几何综合题;压轴题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )