试题
题目:
(2010·密云县)如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.
答案
(1)证明:方法1:连接OD、CD.
∵BC是直径,
∴CD⊥AB.
∵AC=BC.
∴D是AB的中点.
∵O为CB的中点,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥EF.
∴EF是O的切线.
方法2:∵AC=BC,
∴∠A=∠ABC,
∵OB=OD,
∴∠DBO=∠BDO,
∵∠A+∠ADF=90°
∴∠EDB+∠BDO=∠A+∠ADF=90°.
即∠EDO=90°,
∴OD⊥ED
∴EF是O的切线.
(2)解:连BG.
∵BC是直径,
∴∠BDC=90°.
∴CD=
A
C
2
-A
D
2
=
10
2
-
6
2
=8.
∵AB·CD=2S
△ABC
=AC·BG,
∴BG=
AB·CD
AC
=
12×8
10
=
48
5
.
∴CG=
B
C
2
-B
G
2
=
10
2
-
(
48
5
)
2
=
14
5
.
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴sin∠E=sin∠CBG=
CG
BC
=
14
5
10
=
7
25
.
(1)证明:方法1:连接OD、CD.
∵BC是直径,
∴CD⊥AB.
∵AC=BC.
∴D是AB的中点.
∵O为CB的中点,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥EF.
∴EF是O的切线.
方法2:∵AC=BC,
∴∠A=∠ABC,
∵OB=OD,
∴∠DBO=∠BDO,
∵∠A+∠ADF=90°
∴∠EDB+∠BDO=∠A+∠ADF=90°.
即∠EDO=90°,
∴OD⊥ED
∴EF是O的切线.
(2)解:连BG.
∵BC是直径,
∴∠BDC=90°.
∴CD=
A
C
2
-A
D
2
=
10
2
-
6
2
=8.
∵AB·CD=2S
△ABC
=AC·BG,
∴BG=
AB·CD
AC
=
12×8
10
=
48
5
.
∴CG=
B
C
2
-B
G
2
=
10
2
-
(
48
5
)
2
=
14
5
.
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴sin∠E=sin∠CBG=
CG
BC
=
14
5
10
=
7
25
.
考点梳理
考点
分析
点评
专题
切线的判定;等腰三角形的性质;解直角三角形.
(1)求证直线EF是⊙O的切线,只要连接OD证明OD⊥EF即可;
(2)根据∠E=∠CBG,可以把求sin∠E的值得问题转化为求sin∠CBG,进而转化为求Rt△BCG中,两边的比的问题.
本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
几何综合题;压轴题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )