试题
题目:
(2010·西藏)如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.
答案
(1)证明:连接CD,OD,
∵BC是⊙O直径,
∴∠CDB=90°,即CD⊥AB,
∵AC=BC,
∴BD=AD,
∵BO=CO,
∴OD∥AC,
∵EF⊥AC,
∴EF⊥OD,
∵OD为半径,
∴EF是⊙O的切线;
(2)解:∵AB=12,AD=BD=6,AC=10,
在Rt△ACD中,由勾股定理得:CD=
1
0
2
-
6
2
=8,
即sinA=
CD
AC
=
8
10
=
4
5
.
(1)证明:连接CD,OD,
∵BC是⊙O直径,
∴∠CDB=90°,即CD⊥AB,
∵AC=BC,
∴BD=AD,
∵BO=CO,
∴OD∥AC,
∵EF⊥AC,
∴EF⊥OD,
∵OD为半径,
∴EF是⊙O的切线;
(2)解:∵AB=12,AD=BD=6,AC=10,
在Rt△ACD中,由勾股定理得:CD=
1
0
2
-
6
2
=8,
即sinA=
CD
AC
=
8
10
=
4
5
.
考点梳理
考点
分析
点评
专题
切线的判定;等腰三角形的性质;解直角三角形.
(1)连接CD,OD,得出CD⊥AB,推出AD=BD,得出OC∥AC,推出EF⊥OD,根据切线的判定推出即可;
(2)求出AD,根据勾股定理求出CD,解直角三角形ACD即可.
本题考查了等腰三角形性质,三角形的中位线,平行线的性质和判定,解直角三角形,勾股定理,切线的判定等知识点的应用,主要考查了学生的推理和计算能力.
压轴题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )