试题
题目:
(2012·河池)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠C=30°,CE=6,求⊙O的半径.
答案
(1)证明:连接OD.
∵D是BC的中点,O是AB的中点,
∴OD∥AC,
∴∠CED=∠ODE.
∵DE⊥AC,
∴∠CED=∠ODE=90°.
∴OD⊥DE,OD是圆的半径,
∴DE是⊙O的切线.
(2)解:连接AD,
∵AB为直径,
∴∠BDA=90°,
∵DE⊥AC,
∴∠CED=90°,
在Rt△CED中,cos∠C=
CE
CD
,cos30°=
6
CD
,
解得:CD=4
3
,
∵点D为BC的中点,
∴BD=CD=4
3
,
∴AC=AB,
∴∠B=∠C=30°,
在Rt△ABD中.cos∠B=
BD
AB
,cos30°=
4
3
AB
,
解得AB=8,
故⊙O的半径为4.
(1)证明:连接OD.
∵D是BC的中点,O是AB的中点,
∴OD∥AC,
∴∠CED=∠ODE.
∵DE⊥AC,
∴∠CED=∠ODE=90°.
∴OD⊥DE,OD是圆的半径,
∴DE是⊙O的切线.
(2)解:连接AD,
∵AB为直径,
∴∠BDA=90°,
∵DE⊥AC,
∴∠CED=90°,
在Rt△CED中,cos∠C=
CE
CD
,cos30°=
6
CD
,
解得:CD=4
3
,
∵点D为BC的中点,
∴BD=CD=4
3
,
∴AC=AB,
∴∠B=∠C=30°,
在Rt△ABD中.cos∠B=
BD
AB
,cos30°=
4
3
AB
,
解得AB=8,
故⊙O的半径为4.
考点梳理
考点
分析
点评
切线的判定;等腰三角形的判定与性质;解直角三角形.
(1)连接OD,只要证明OD⊥DE即可.此题可运用三角形的中位线定理证OD∥AC,因为DE⊥AC,所以OD⊥DE.
(2)通过相似三角形的性质或三角函数的定义求出AB或圆的半径的值即可.
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )