答案

(1)证明:连接OC.
∵FC=FE(已知),
∴∠FCE=∠FEC(等边对等角);
又∵∠AED=∠FEC(对顶角相等),
∴∠FCE=∠AED(等量代换);
∵OA=OC,
∴∠OAC=∠OCA(等边对等角);
∴∠FCE+∠OCA=∠AED+∠OAC;
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCE+∠OCA=90°,即FC⊥OC,
∴FC是⊙O的切线;
(2)解:连接BC.
∵AB是⊙O的直径,⊙O的半径为5,
∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,
∴∠A+∠ABC=90°.
∵DF⊥AB,
∴∠A+∠AED=90°,
∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;
由(1)知,∠AED=∠FEC=∠ECF,
∴BC=AB·cos∠ABC=AB·cos∠ECF=10×
=4,
∴AC=
=
=2
.

(1)证明:连接OC.
∵FC=FE(已知),
∴∠FCE=∠FEC(等边对等角);
又∵∠AED=∠FEC(对顶角相等),
∴∠FCE=∠AED(等量代换);
∵OA=OC,
∴∠OAC=∠OCA(等边对等角);
∴∠FCE+∠OCA=∠AED+∠OAC;
∵DF⊥AB,
∴∠ADE=90°,
∴∠FCE+∠OCA=90°,即FC⊥OC,
∴FC是⊙O的切线;
(2)解:连接BC.
∵AB是⊙O的直径,⊙O的半径为5,
∴∠ACB=90°(直径所对的圆周角是直角),AB=2OA=10,
∴∠A+∠ABC=90°.
∵DF⊥AB,
∴∠A+∠AED=90°,
∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;
由(1)知,∠AED=∠FEC=∠ECF,
∴BC=AB·cos∠ABC=AB·cos∠ECF=10×
=4,
∴AC=
=
=2
.