切线的判定;圆周角定理;解直角三角形.
(1)连结AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,
这样根据切线的判定定理即可得到结论;
(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;
(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE=
,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.
本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.
证明题;压轴题.