切线的判定;解直角三角形.
(1)连结OC,由OC=OB得∠2=∠B,DQ=DC得∠1=∠Q,根据QP⊥PB得到∠Q+∠B=90°,则∠1+∠2=90°,再利用平角的定义得到∠DCO=90°,然后根据切线的判定定理得到CD为⊙O的切线;
(2)连结AC,由AB为⊙O的直径得∠ACB=90°,根据余弦的定义得cosB=
=
=
,可计算出BC=
,在Rt△BPQ中,利用余弦的定义得cosB=
=
,可计算出BQ=10,然后利用QC=BQ-BC进行计算即可.
本题考查了切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查圆周角定理的推论以及解直角三角形.