试题
题目:
(2013·铜仁地区)如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.
(1)求证:△PAB∽△PCA;
(2)求证:AP是⊙O的切线.
答案
证明:(1)∵PC=50,PA=30,PB=18,
∴
PC
PA
=
50
30
=
5
3
,
PA
PB
=
30
18
=
5
3
,
∴
PC
PA
=
PA
PB
,
又∵∠APC=∠BPA,
∴△PAB∽△PCA;
(2)∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠ABP=90°,
又∵△PAB∽△PCA,
∴∠PAC=∠ABP,
∴∠PAC=90°,
∴PA是⊙O的切线.
证明:(1)∵PC=50,PA=30,PB=18,
∴
PC
PA
=
50
30
=
5
3
,
PA
PB
=
30
18
=
5
3
,
∴
PC
PA
=
PA
PB
,
又∵∠APC=∠BPA,
∴△PAB∽△PCA;
(2)∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠ABP=90°,
又∵△PAB∽△PCA,
∴∠PAC=∠ABP,
∴∠PAC=90°,
∴PA是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定;相似三角形的判定与性质.
(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论;
(2)欲证明AP是⊙O的切线,只需证得∠PAC=90°.
本题考查了相似三角形的判定与性质、切线的判定.解题时,利用了圆周角定理:直径所对的圆周角是直角.
证明题;压轴题.
找相似题
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2002·岳阳)下列命题中,真命题是( )
(2013·川汇区一模)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )