试题
题目:
(2010·自贡)如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.
答案
解:作出示意图,
连接AB,同时连接OC并延长交AB于E,
因为夹子是轴对称图形,故OE是对称轴,
∴OE⊥AB,AE=BE,
∵∠COD=∠AOE,∠CDO=∠AEO=90°,
∴Rt△OCD∽Rt△OAE,
∴
OC
OA
=
CD
AE
,
而OC=
O
D
2
+D
C
2
=
24
2
+
10
2
=26,
即
26
24+15
=
10
AE
,∴AE=
39×10
26
=15,
∴AB=2AE=30(mm).
答:AB两点间的距离为30mm.
解:作出示意图,
连接AB,同时连接OC并延长交AB于E,
因为夹子是轴对称图形,故OE是对称轴,
∴OE⊥AB,AE=BE,
∵∠COD=∠AOE,∠CDO=∠AEO=90°,
∴Rt△OCD∽Rt△OAE,
∴
OC
OA
=
CD
AE
,
而OC=
O
D
2
+D
C
2
=
24
2
+
10
2
=26,
即
26
24+15
=
10
AE
,∴AE=
39×10
26
=15,
∴AB=2AE=30(mm).
答:AB两点间的距离为30mm.
考点梳理
考点
分析
点评
专题
相似三角形的应用.
先根据题意画出图形,再根据轴对称的性质求出Rt△OCD∽Rt△OAE,再根据相似三角形的对应边成比例及勾股定理求出AB的长即可.
此题是相似三角形在实际生活中的运用,解答此题的关键是根据题意画出图形,由相似三角形的性质解答.
压轴题.
找相似题
(2013·柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
(2011·漳州)如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为( )
(2010·乐山)某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )
(2009·黔南州)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )