试题
题目:
(2006·深圳)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )
A.4.5米
B.6米
C.7.2米
D.8米
答案
B
解:如图,GC⊥BC,AB⊥BC,
∴GC∥AB,
∴△GCD∽△ABD(两个角对应相等的两个三角形相似),
∴
DC
DB
=
GC
AB
,
设BC=x,则
1
x+1
=
1.5
AB
,
同理,得
2
x+5
=
1.5
AB
,
∴
1
x+1
=
2
x+5
,
∴x=3,
∴
1
3+1
=
1.5
AB
,
∴AB=6.
故选B.
考点梳理
考点
分析
点评
专题
相似三角形的应用.
由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.
本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“
1.5
AB
”.
压轴题;转化思想.
找相似题
(2013·柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
(2011·漳州)如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为( )
(2010·乐山)某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )
(2009·黔南州)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶( )
(2008·庆阳)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )