试题
题目:
(2012·融安县一模)已知某个一次函数图象经过点A(0,2)、B(2,0)是这个函数图象上的两点.
(1)求一次函数的解析式.
(2)点C(x
1
,y
1
)、D(x
2
,y
2
)是这个函数图象上的两点.若x
1
<x
2
,比较y
1
,y
2
的大小.
答案
解:设一次函数的解析式是y=ax+b.
∵图象经过点A(0,2)、B(2,0),
∴
b=2
2a+b=0
解得
a=-1
b=2
,
∴一次函数的解析式是y=-x+2.
(2)∵a=-1<0,x
1
<x
2
,
∴y
1
>y
2
.
解:设一次函数的解析式是y=ax+b.
∵图象经过点A(0,2)、B(2,0),
∴
b=2
2a+b=0
解得
a=-1
b=2
,
∴一次函数的解析式是y=-x+2.
(2)∵a=-1<0,x
1
<x
2
,
∴y
1
>y
2
.
考点梳理
考点
分析
点评
专题
待定系数法求一次函数解析式;一次函数图象上点的坐标特征.
(1)首先根据题意设出关系式y=ax+b,再把A,B两点的坐标分别代入,得到一个方程组,可以解得a,b的值,进而得到关系式;
(2)根据一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,可以得到答案,
此题主要考查了利用待定系数法求函数式,以及一次函数的性质,利用一次函数的特点,列出方程组是解题的关键.
代数综合题.
找相似题
(2012·黔南州)如图,直线AB对应的函数表达式是( )
(2011·顺义区一模)已知:如图,在平面直角坐标系xOy中,一次函数y=-2x+4的图象分别与x、y轴交于点A、B,点P在x轴上,若S
△ABP
=6,求直线PB的函数解析式.
(2009·相城区模拟)如果一次函数y=kx+b中自变量x的取值范围是-1≤x≤3时,函数值y的取值范围是1≤y≤3,求这个一次函数解析式.
(2008·从化市一模)如图,矩形PMON的边OM,ON分别在坐标轴上,且点P的坐标为(-2,3).将矩形PMON向右平移4个单位,得到矩形P′M′O′N′(P→P′,M→M′,O→O′,N→N′).
(1)请在右图的直角坐标系中画出平移后的矩形;
(2)求直线OP的函数解析式.
若方程组
a+b=3
b+c=2
c+a=1
的解满足k=a+b+c,求关于x的函数y=kx-k的解析式.