试题
题目:
直线y=kx+b与x轴交于点A(2,0),与y轴交于点B,且△AOB的面积为2,则该直线解析式为
y=-x+2或y=x-2
y=-x+2或y=x-2
.
答案
y=-x+2或y=x-2
解:∵直线y=kx+b与x轴交于点A(2,0),
∴2k+b=0…①,
∵直线y=kx+b与y轴交于点B,
∴B(0,b),
∵△AOB的面积为2,
∴S=
1
2
×2×|b|=2
,
∴b=2或-2,
代入①得,
k=-1或1,
∴该直线解析式为:y=-x+2或y=x-2.
考点梳理
考点
分析
点评
待定系数法求一次函数解析式.
由题意y=kx+b与x轴交于点A(2,0),代入直线得到一个k与b的关系式,又直线与y轴交于点B(0,b)再根据△AOB的面积为2,求出b值,从而求出直线的解析式.
此题考查一次函数的性质及用待定系数法求一次函数的解析式,把三角形的面积同函数联系起来,是一种常见的题型.
找相似题
(2012·黔南州)如图,直线AB对应的函数表达式是( )
(2011·顺义区一模)已知:如图,在平面直角坐标系xOy中,一次函数y=-2x+4的图象分别与x、y轴交于点A、B,点P在x轴上,若S
△ABP
=6,求直线PB的函数解析式.
(2009·相城区模拟)如果一次函数y=kx+b中自变量x的取值范围是-1≤x≤3时,函数值y的取值范围是1≤y≤3,求这个一次函数解析式.
(2008·从化市一模)如图,矩形PMON的边OM,ON分别在坐标轴上,且点P的坐标为(-2,3).将矩形PMON向右平移4个单位,得到矩形P′M′O′N′(P→P′,M→M′,O→O′,N→N′).
(1)请在右图的直角坐标系中画出平移后的矩形;
(2)求直线OP的函数解析式.
若方程组
a+b=3
b+c=2
c+a=1
的解满足k=a+b+c,求关于x的函数y=kx-k的解析式.