试题
题目:
已知y-4与x成正比例,且x=6时y=-4
(1)求y与x的函数关系式.
(2)此直线在第一象限上有一个动点P(x,y),在x轴上有一点C(-2,0).这条直线与x轴相交于点A.求△PAC的面积S与x之间的函数关系式,并写出自变量x的取值范围.
答案
解:(1)∵y-4与x成正比例,
∴设y-4=kx(k≠0).
把x=6,y=-4代入,得
-4-4=6k,
解得,k=-
4
3
,则y-4=-
4
3
x,
∴y与x的函数关系式为:y=-
4
3
x+4;
(2)由(1)知,y与x的函数关系式为:y=-
4
3
x+4.
当y=0时,x=3,即A(3,0).
∵C(-2,0),
∴AC=5.
∴S=
1
2
AC·|y|=
5
2
×|-
4
3
x+4|=-
10
3
x+10(0<x<3).
解:(1)∵y-4与x成正比例,
∴设y-4=kx(k≠0).
把x=6,y=-4代入,得
-4-4=6k,
解得,k=-
4
3
,则y-4=-
4
3
x,
∴y与x的函数关系式为:y=-
4
3
x+4;
(2)由(1)知,y与x的函数关系式为:y=-
4
3
x+4.
当y=0时,x=3,即A(3,0).
∵C(-2,0),
∴AC=5.
∴S=
1
2
AC·|y|=
5
2
×|-
4
3
x+4|=-
10
3
x+10(0<x<3).
考点梳理
考点
分析
点评
待定系数法求一次函数解析式;一次函数图象上点的坐标特征.
(1)根据正比例函数的定义设出函数解析式y-4=kx(k≠0),再把当x=6时,y=-4代入求出k的值;
(2)点P的纵坐标就是△PAC的高,直接写出面积公式.
本题考查了一次函数图象上点的坐标特征,待定系数法求一次函数解析式.点在直线上,则它的坐标满足直线的解析式.
找相似题
(2012·黔南州)如图,直线AB对应的函数表达式是( )
(2011·顺义区一模)已知:如图,在平面直角坐标系xOy中,一次函数y=-2x+4的图象分别与x、y轴交于点A、B,点P在x轴上,若S
△ABP
=6,求直线PB的函数解析式.
(2009·相城区模拟)如果一次函数y=kx+b中自变量x的取值范围是-1≤x≤3时,函数值y的取值范围是1≤y≤3,求这个一次函数解析式.
(2008·从化市一模)如图,矩形PMON的边OM,ON分别在坐标轴上,且点P的坐标为(-2,3).将矩形PMON向右平移4个单位,得到矩形P′M′O′N′(P→P′,M→M′,O→O′,N→N′).
(1)请在右图的直角坐标系中画出平移后的矩形;
(2)求直线OP的函数解析式.
若方程组
a+b=3
b+c=2
c+a=1
的解满足k=a+b+c,求关于x的函数y=kx-k的解析式.