答案
解:设招聘甲工种工人x人,则乙工种工人(150-x)人,每月所付的工资为y元,
则y=600x+1000(150-x)=-400x+150000,
∵(150-x)≥2x,x≤50,
∵-400<0,
∴y随x的增大而减小,
∴当x=50时,y
最小=-400×50+150000=130000元.
答:招聘甲50人,乙100人时,可使得每月所付的工资最少;最少工资130000元.
解:设招聘甲工种工人x人,则乙工种工人(150-x)人,每月所付的工资为y元,
则y=600x+1000(150-x)=-400x+150000,
∵(150-x)≥2x,x≤50,
∵-400<0,
∴y随x的增大而减小,
∴当x=50时,y
最小=-400×50+150000=130000元.
答:招聘甲50人,乙100人时,可使得每月所付的工资最少;最少工资130000元.