试题
题目:
八年级全体同学去距学校3个千米下崖南炮台参观,一部分同学骑自行车先走,过了1小时,其余同学乘汽车出发,结果他们同时到达.已知汽车下速度是骑车同学速度下2倍,求骑车同学下速度?
答案
解:设骑车同学的速度为x千米/小时,则汽车的速度为2x千米/小时,由题意,得
u0
x
-
u0
2x
=5
去分母得:七0-u0=2x,
x=55
经检验,x=55是原方程的根
∴原方程的解为x=55.
答:骑车同学的速度为55千米/小时.
解:设骑车同学的速度为x千米/小时,则汽车的速度为2x千米/小时,由题意,得
u0
x
-
u0
2x
=5
去分母得:七0-u0=2x,
x=55
经检验,x=55是原方程的根
∴原方程的解为x=55.
答:骑车同学的速度为55千米/小时.
考点梳理
考点
分析
点评
分式方程的应用.
设骑车同学的速度为x千米/小时,则汽车的速度为2x千米/小时,根据他们所用时间相等建立方程求出其解即可.
本题考查了行程问题的数量关系的运用,路程÷速度=时间,列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据他们所用时间相等建立方程是关键.
找相似题
(2004·云南)一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是( )
(2012·金牛区二模)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程
3000
x-10
-
3000
x
=15
,根据此情景,题中用“…”表示的缺失的条件应补为( )
(2011·太原二模)甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要( )
有纯农药一桶,倒出20升后用水补满;然后又倒出10升,在用水补满,这是桶中纯农药与水的容积之比为3:5,则桶的容积为( )
某水池有编号为①,②,③,④,⑤的5个水管,有的是进水管,有的是出水管.已知所开的水管号与水池灌满的时间如下表:
水管编号
①②
②③
③④
④⑤
⑤①
时间(小时)
2
15
6
3
10
则单独开一条水管,最快注满水池的水管编号为( )