试题
题目:
某中学组织学生到离学校15千米的东山进行春季社会实践活动,先遣队与大队同时出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到30分钟,先遣队和大队速度各是多少?
答案
解:设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,
15
x
=
15
1.2x
+
30
60
,
解得:x=5,
经检验:x=5是原方程的解,
1.2x=1.2×5=6.
答:先遣队和大队的速度分别是6千米/时,5千米/时.
解:设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,
15
x
=
15
1.2x
+
30
60
,
解得:x=5,
经检验:x=5是原方程的解,
1.2x=1.2×5=6.
答:先遣队和大队的速度分别是6千米/时,5千米/时.
考点梳理
考点
分析
点评
分式方程的应用.
首先设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,由题意可知先遣队用的时间+0.5小时=大队用的时间.
此题主要考查了分式方程的应用,关键是弄懂题意,表示出大队和先遣队各走15千米所用的时间,根据时间关系列出方程.
找相似题
(2004·云南)一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是( )
(2012·金牛区二模)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程
3000
x-10
-
3000
x
=15
,根据此情景,题中用“…”表示的缺失的条件应补为( )
(2011·太原二模)甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要( )
有纯农药一桶,倒出20升后用水补满;然后又倒出10升,在用水补满,这是桶中纯农药与水的容积之比为3:5,则桶的容积为( )
某水池有编号为①,②,③,④,⑤的5个水管,有的是进水管,有的是出水管.已知所开的水管号与水池灌满的时间如下表:
水管编号
①②
②③
③④
④⑤
⑤①
时间(小时)
2
15
6
3
10
则单独开一条水管,最快注满水池的水管编号为( )