试题
题目:
甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.
答案
解:设步行速度为x千米/时,那么骑车速度是4x千米/时,
则
7
x
+
19-7
4x
=2
解得x=5
经检验x=5是原方程的解.
∴4x=20
答:步行速度为5km/h,骑自行车速度为20km/h.
解:设步行速度为x千米/时,那么骑车速度是4x千米/时,
则
7
x
+
19-7
4x
=2
解得x=5
经检验x=5是原方程的解.
∴4x=20
答:步行速度为5km/h,骑自行车速度为20km/h.
考点梳理
考点
分析
点评
专题
分式方程的应用.
未知的两个量中,步行的速度属于较小的量,应设步行的速度为未知数比较好.本题求速度,步行的路程和骑车的路程比较明显,那么应根据时间来列等量关系.本题的等量关系为:步行时间+骑车时间=2.
应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:时间=路程÷速度,需注意分式应用题需验根.
行程问题.
找相似题
(2004·云南)一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是( )
(2012·金牛区二模)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程
3000
x-10
-
3000
x
=15
,根据此情景,题中用“…”表示的缺失的条件应补为( )
(2011·太原二模)甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要( )
有纯农药一桶,倒出20升后用水补满;然后又倒出10升,在用水补满,这是桶中纯农药与水的容积之比为3:5,则桶的容积为( )
某水池有编号为①,②,③,④,⑤的5个水管,有的是进水管,有的是出水管.已知所开的水管号与水池灌满的时间如下表:
水管编号
①②
②③
③④
④⑤
⑤①
时间(小时)
2
15
6
3
10
则单独开一条水管,最快注满水池的水管编号为( )