试题
题目:
如图,在梯形ABCD中,AB∥CD,若OA=OB,则:
(1)OC=OD吗?
(2)梯形ABCD是等腰梯形吗?试说明理由.
答案
解:(1)相等.理由如下:
∵AB∥CD,
∴∠DCO=∠OAB,∠CDO=∠ABO,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠CDO=∠DCO,
∴OC=OD.
(2)四边形ABCD是等腰梯形.理由如下:
∵OA=OB,OC=OD
∴AC=BD,
∵
AB=AB
∠DBA=∠CAB
AC=BD
,
∴△CAB≌△DBA(SAS),
∴AD=CB,
∵四边形ABCD是梯形
∴四边形ABCD是等腰梯形.
解:(1)相等.理由如下:
∵AB∥CD,
∴∠DCO=∠OAB,∠CDO=∠ABO,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠CDO=∠DCO,
∴OC=OD.
(2)四边形ABCD是等腰梯形.理由如下:
∵OA=OB,OC=OD
∴AC=BD,
∵
AB=AB
∠DBA=∠CAB
AC=BD
,
∴△CAB≌△DBA(SAS),
∴AD=CB,
∵四边形ABCD是梯形
∴四边形ABCD是等腰梯形.
考点梳理
考点
分析
点评
专题
等腰梯形的判定;平行线的性质.
(1)根据平行线的性质可得∠DCO=∠OAB,∠CDO=∠ABO,再根据等边对等角可得∠OAB=∠OBA,由等角对等边不难证得OC=OD.
(2)由第一问可推出AC=BD,从而利用对角线相等的梯形是等腰梯形进行判定.
此题主要考查等腰梯形的判定及平行线的性质等知识点的综合运用.
证明题.
找相似题
(2013·绵阳)下列说法正确的是( )
(2011·眉山)下列命题中,假命题是( )
(2007·天门)如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )
(2003·仙桃)如图,线段AC,BD相交于点O,欲使四边形ABCD成为等腰梯形,应满足的条件是( )
(1999·武汉)下列命题中,真命题是( )