试题
题目:
(2011·郴州)在梯形ABCD中,AD∥BC,且AD=DC,对角线BD平分∠ABC.
求证:梯形ABCD是一个等腰梯形.
答案
证明:∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AB=AD,
∵AD=DC,
∴AB=CD,
∵四边形ABCD是梯形,
∴梯形ABCD是等腰梯形.
证明:∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AB=AD,
∵AD=DC,
∴AB=CD,
∵四边形ABCD是梯形,
∴梯形ABCD是等腰梯形.
考点梳理
考点
分析
点评
专题
等腰梯形的判定;平行线的性质.
根据平行线的性质推出∠ADB=∠DBC,根据角平分线的性质推出∠ADB=∠ABD,得出AD=AB,求出AB=CD,即可推出答案.
本题主要考查对等腰三角形的性质和判定,平行线的性质,角平分线的性质,等腰梯形的判定等知识点的理解和掌握,求出AB=CD是解此题的关键.
证明题;压轴题.
找相似题
(2013·绵阳)下列说法正确的是( )
(2011·眉山)下列命题中,假命题是( )
(2007·天门)如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是( )
(2003·仙桃)如图,线段AC,BD相交于点O,欲使四边形ABCD成为等腰梯形,应满足的条件是( )
(1999·武汉)下列命题中,真命题是( )