试题
题目:
四边形ABCD是直角梯形,∠BAD=135°,∠C=90°,AD=
10
,AB=9,求点A、B、C、D的坐标.
答案
解:∵∠BAD=135°,
∴∠DAO=180°-∠BAD=180°-135°=45°,
∵∠AOD=90°,
∴∠ADO=45°,
∴OA=OD=AD·sin45°=
10
×
2
2
=
5
,
∴A(-
5
,
5
),D(0,
5
),
∵AB=9,
∴OB=AB+OA=9+
5
,
∴B(-9-
5
,0),
∵四边形ABCD是直角梯形,
∴∠C=∠CBA=∠BOD=90°,
∴四边形OBCD是矩形,
∴CD=OB,BC=OD,
∴C(-9-
5
,
5
).
∴A(-
5
,
5
),B(-9-
5
,0),C(-9-
5
,
5
),D(0,
5
).
解:∵∠BAD=135°,
∴∠DAO=180°-∠BAD=180°-135°=45°,
∵∠AOD=90°,
∴∠ADO=45°,
∴OA=OD=AD·sin45°=
10
×
2
2
=
5
,
∴A(-
5
,
5
),D(0,
5
),
∵AB=9,
∴OB=AB+OA=9+
5
,
∴B(-9-
5
,0),
∵四边形ABCD是直角梯形,
∴∠C=∠CBA=∠BOD=90°,
∴四边形OBCD是矩形,
∴CD=OB,BC=OD,
∴C(-9-
5
,
5
).
∴A(-
5
,
5
),B(-9-
5
,0),C(-9-
5
,
5
),D(0,
5
).
考点梳理
考点
分析
点评
直角梯形;坐标与图形性质.
由∠BAD=135°,即可得△OAD是等腰直角三角形,又由AD=
10
,即可求得OA与OD的长,则可求得A与D的坐标,又由AB=9,即可求得点B的坐标,然后由四边形ABCD是直角梯形,易得四边形OBCD是矩形,则可求得点C的坐标.
此题考查了直角梯形的性质、矩形的判定与性质、等腰直角三角形的性质以及坐标与图形的性质等知识.此题难度不大,解题的关键是得到△AOD是等腰直角三角形,四边形OBCD是矩形,注意数形结合思想的应用.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )