试题

题目:
青果学院(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是(  )



答案
A
青果学院解:连接BF,CF,过A作AE∥BC,过F作FG⊥BC于G,
则四边形ABCE是平行四边形,AE=BC,AB=CE=1,DE=DC-CE=4-1=3,
∵∠D=90°,
∴△ADE是直角三角形,
由勾股定理得AE=
AD2+DE2
=
42+32
=5,
∵AE=BC,
∴BC=5,
∵AB∥DC,∠D=90°,F为AD的中点,AD=DC=4,AB=1,
∴AF=FD=
1
2
AD=
1
2
×4=2,△DCF与△ABF是直角三角形,CF=
CD2+DF2
=
42+22
=2
5

BF=
AB2+AF2
=
12+22
=
5

在△BFC中,
∵BF2+CF2=(
5
2+(2
5
2=25=BC2=52=25,
∴△BFC是直角三角形;
∴S△BFC=
1
2
BF·CF=
1
2
BC·FG,即
5
·2
5
=5FG,FG=2.
故选A.
考点梳理
直角梯形;勾股定理;三角形中位线定理.
连接BF,CF,过A作AE∥BC,过F作FG⊥BC于G,此时AE将直角梯形分为一个平行四边形和一个直角三角形,从而可求得AE,BC,AF,CF,BF的长,再根据面积公式即可求得FG的长.
此题较复杂,解答此题的关键是作出辅助线,利用平行四边形的性质,勾股定理求出△BCF是直角三角形,再利用三角形的面积公式求出△BCF的高即可.
压轴题.
找相似题