试题
题目:
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
A.
3
2
3
B.2
C.3
D.
2
3
答案
C
解:设AD=x,在Rt△ACD中,由勾股定理,得
AC=
x
2
+
(
3
)
2
∵AD∥BC,
∴∠DAC=∠ACB,
又∵∠ADC=∠BAC=90°,
∴△ABC∽△DCA,
∴
AB
CD
=
AC
AD
,即
2
3
=
x
2
+
(
3
)
2
x
,
解得x=3(舍去负值),即AD=3,故选C.
考点梳理
考点
分析
点评
直角梯形.
设所求边AD=x,利用勾股定理求AC,再根据条件证明△ABC∽△DCA,利用相似三角形对应边的比相等,列方程求x即可.
本题考查了勾股定理,相似三角形的性质在梯形中的运用.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )
(2012·景宁县模拟)如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿折线B→C→D→A运动,点P运动的速度为2个单位长度/秒,若设点P运动的时间为x秒,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积为( )