题目:
(2009·眉山)在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、

EC、BF、CF.
(1)判断四边形AECD的形状(不证明);
(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明;
(3)若CD=2,求四边形BCFE的面积.
答案
解:(1)平行四边形(2分);
(2)△BEF≌△CDF(3分)或(△AFB≌△EBC≌△EFC)
证明:连接DE,
∵AB=2CD,E为AB中点,
∴DC=EB,
又∵DC∥EB,
∴四边形BCDE是平行四边形,
∵AB⊥BC,

∴四边形BCDE为矩形,
∴∠AED=90°,∠CDE=∠BED=90°,BE=CD,
在Rt△AED中,∠A=60°,F为AD的中点,
∴AF=
AD=EF,
∴△AEF为等边三角形,
∴∠DFE=180°-60°=120°,
∵EF=DF,
∴∠FDE=∠FED=30°.
∴∠CDF=∠BEF=120°,
在△BEF和△FDC中,
,
∴△BEF≌△CDF(SAS).(6分)(其他情况证明略)
(3)若CD=2,则AD=4,
∵∠A=60°,
∴sin60°=
=
,
∴DE=AD·
=2
∴DE=BC=2
,
∵四边形AECD为平行四边形,
∴S
△ECF与S
四边形AECD等底同高,
∴S
△ECF=
S
四边形AECD=
CD·DE=
×2×2
=2
,
S
△CBE=
BE·BC=
×2×2
=2
,
∴S
四边形BCFE=S
△ECF+S
△EBC=2
+2
=4
.(9分)
解:(1)平行四边形(2分);
(2)△BEF≌△CDF(3分)或(△AFB≌△EBC≌△EFC)
证明:连接DE,
∵AB=2CD,E为AB中点,
∴DC=EB,
又∵DC∥EB,
∴四边形BCDE是平行四边形,
∵AB⊥BC,

∴四边形BCDE为矩形,
∴∠AED=90°,∠CDE=∠BED=90°,BE=CD,
在Rt△AED中,∠A=60°,F为AD的中点,
∴AF=
AD=EF,
∴△AEF为等边三角形,
∴∠DFE=180°-60°=120°,
∵EF=DF,
∴∠FDE=∠FED=30°.
∴∠CDF=∠BEF=120°,
在△BEF和△FDC中,
,
∴△BEF≌△CDF(SAS).(6分)(其他情况证明略)
(3)若CD=2,则AD=4,
∵∠A=60°,
∴sin60°=
=
,
∴DE=AD·
=2
∴DE=BC=2
,
∵四边形AECD为平行四边形,
∴S
△ECF与S
四边形AECD等底同高,
∴S
△ECF=
S
四边形AECD=
CD·DE=
×2×2
=2
,
S
△CBE=
BE·BC=
×2×2
=2
,
∴S
四边形BCFE=S
△ECF+S
△EBC=2
+2
=4
.(9分)