试题
题目:
直角梯形的一腰与下底都等于a,这个腰与下底的夹角为60°,则中位线长为
3
4
a
3
4
a
.
答案
3
4
a
解:根据题意可作出如图:DE⊥BC,DC=BC=a,∠C=60°,则EC=a×cos60°=
1
2
a,
∵∠A=∠B=90°,AD∥BC,DE⊥BC,
∴四边形ABED是矩形,
∴AD=BE=BC-EC=a-
1
2
a=
1
2
a,
∴梯形ABCD的中位线长=
1
2
(AD+BC)=
1
2
(
1
2
a+a)=
3
4
a.
故答案填
3
4
a.
考点梳理
考点
分析
点评
直角梯形.
由已知条件易求得上底的长,再根据梯形中位线性质:中位线的长等于
1
2
(上底+下底),即可求得中位线的长.
本题考查了直角梯形的性质、矩形的性质、梯形中位线性质等知识点,解直角梯形一般是通过作高线构造矩形和直角三角形的方式来解决.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )