试题
题目:
如图,直角梯形中∠B=90°,AD∥BC,AB=BC=8,CD=10,则梯形的面积是
40
40
平方单位.
答案
40
解:作DE⊥BC
∵∠B=90°
∴AB∥DE.
又∵AD∥BC
∴四边形ABED是矩形
∴AD=BE,AB=DE
∴在Rt△DEC中,CD=10,DE=AB=8,根据勾股定理得CE=
CD
2
-
DE
2
=
10
2
-
8
2
=6
∴BE=BC-CE=8-6=2
∴AD=2
∴S
梯形ABCD
=
1
2
(AD+BC)×AB=
1
2
×(2+2+6)×8=40.
考点梳理
考点
分析
点评
直角梯形;勾股定理.
根据勾股定理解出AD的长,然后根据梯形面积公式解答.
本题涉及到梯形的面积公式和勾股定理,解决此类题要懂得用梯形的常用辅助线,把梯形分割为长方形和直角三角形,从而由长方形和直角三角形的性质来求解.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )