试题
题目:
如图,在直角梯形ABCD中,∠ABC=∠BCD=90°,AB=BC=10,点M在BC上,使得△ADM是正三角形,则△ABM与△DCM的面积和是
300-150
3
300-150
3
.
答案
300-150
3
解:过A点作AE⊥CD交CD的延长线于E.
∵∠ABC=∠BCD=90°,AB=BC=10,
∴四边形ABCE是正方形.
∵△ADM是正三角形,
∴Rt△ABM≌Rt△AED,
∴∠ADE=∠AMB,
∴∠CDM=∠CMD,
∴CD=CM,
设MB=x,则ED=x,CD=CM=10-x.
得10
2
+x
2
=2(10-x)
2
解得x=20-10
3
,x=20+10
3
(不合题意舍去)
∴△ABM与△DCM的面积和=10×(20-10
3
)÷2+(10-20+10
3
)
2
÷2=300-150
3
.
考点梳理
考点
分析
点评
专题
直角梯形;全等三角形的判定;等边三角形的性质;正方形的性质.
补成正方形,相当于正方形中的内接正三角形,毫无疑问有:△ABM≌△AED,△CDM为等腰直角三角形,设MB=x,由勾股定理可得x的值.
本题考查了正方形、全等三角形的判定和性质,同时考查了等边三角形的性质、勾股定理等知识,综合性较强.
压轴题.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )