试题

题目:
青果学院如图,在直角梯形ABCD中,∠ABC=∠BCD=90°,AB=BC=10,点M在BC上,使得△ADM是正三角形,则△ABM与△DCM的面积和是
300-150
3
300-150
3

答案
300-150
3

解:过A点作AE⊥CD交CD的延长线于E.
青果学院
∵∠ABC=∠BCD=90°,AB=BC=10,
∴四边形ABCE是正方形.
∵△ADM是正三角形,
∴Rt△ABM≌Rt△AED,
∴∠ADE=∠AMB,
∴∠CDM=∠CMD,
∴CD=CM,
设MB=x,则ED=x,CD=CM=10-x.
得102+x2=2(10-x)2
解得x=20-10
3
,x=20+10
3
(不合题意舍去)
∴△ABM与△DCM的面积和=10×(20-10
3
)÷2+(10-20+10
3
2÷2=300-150
3
考点梳理
直角梯形;全等三角形的判定;等边三角形的性质;正方形的性质.
补成正方形,相当于正方形中的内接正三角形,毫无疑问有:△ABM≌△AED,△CDM为等腰直角三角形,设MB=x,由勾股定理可得x的值.
本题考查了正方形、全等三角形的判定和性质,同时考查了等边三角形的性质、勾股定理等知识,综合性较强.
压轴题.
找相似题