试题
题目:
如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为( )
A.1
B.2
C.2、5
D.3
答案
D
解:延长DA到D′,则D和D′关于AB对称,连接CD′,与AB相交于点P,
根据“两点之间线段最短”可得此时PC+PD的和最小.
由于AD′∥BC,则△APD′∽△BPC.
设PB=x,则AP=5-x.
所以
AP
BP
=
AD′
BC
,
即
5-x
x
=
4
6
,
解得x=3,
即PB=3.
故选D.
考点梳理
考点
分析
点评
专题
直角梯形;轴对称-最短路线问题.
作出D点关于AB的对称点D′,连接CD′,即可确定当PC+PD的和最小时P点位置,进而求出PB的长即可.
此题考查了轴对称的性质,及相似三角形的性质.解题时要注意找到对称点,并根据“两点之间线段最短”确定P点的位置.
动点型.
找相似题
(2012·莱芜)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论不正确的是( )
(2011·潍坊)已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是( )
(2010·黄石)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AB=2,CD=
3
,则AD的长为( )
(2009·武汉)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
①△ACD≌△ACE;②△CDE为等边三角形;③
EH
BE
=2;④
S
△EBC
S
△EHC
=
AH
CH
.
其中结论正确的是( )
(2009·遂宁)如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( )